

Programming PHREEQC Calculations with C++ and Python
A Comparative Study

Mike Müller

1
, David L. Parkhurst

2
, Scott R. Charlton

2

1
hydrocomputing, mmueller@hydrocomputing.com, Leipzig, Germany

2
U.S. Geological Survey, dlpark@usgs.gov, charlton@usgs.gov, Denver, CO, USA

ABSTRACT

The new IPhreeqc module provides an application programming interface (API) to facilitate coupling of
other codes with the U.S. Geological Survey geochemical model PHREEQC. Traditionally, loose coupling
of PHREEQC with other applications required methods to create PHREEQC input files, start external
PHREEQC processes, and process PHREEQC output files. IPhreeqc eliminates most of this effort by
providing direct access to PHREEQC capabilities through a component object model (COM), a library, or
a dynamically linked library (DLL). Input and calculations can be specified through internally programmed
strings, and all data exchange between an application and the module can occur in computer memory.

This study compares simulations programmed in C++ and Python that are tightly coupled with IPhreeqc
modules to the traditional simulations that are loosely coupled to PHREEQC. The study compares
performance, quantifies effort, and evaluates lines of code and the complexity of the design. The
comparisons show that IPhreeqc offers a more powerful and simpler approach for incorporating
PHREEQC calculations into transport models and other applications that need to perform PHREEQC
calculations. The IPhreeqc module facilitates the design of coupled applications and significantly reduces
run times. Even a moderate knowledge of one of the supported programming languages allows more
efficient use of PHREEQC than the traditional loosely coupled approach.

THE IPHREEQC MODULE

The widely used PHREEQC model (Parkhurst & Appelo, 1999) simulates a variety of geochemical
processes. The new IPhreeqc module (Charlton & Parkhurst, 2011) facilitates the use of PHREEQC with
multiple programming languages. The IPhreeqc module may be used to automate geochemical
calculations, to couple PHREEQC with transport models, or to integrate geochemical calculations into
other applications. There are several couplings of transport codes with PHREEQC, including models for
the unsaturated zone (Wissmeier & Barry 2010), the saturated zone (Prommer et.al, 1999; Parkhurst et.
al 2004, 2010), and pit lakes (Müller, 2011a). Each of these models had its own unique interface with
PHREEQC. Instead, IPhreeqc provides a simple and consistent API for C, C++ and FORTRAN as well as
a COM interface that is useable with a variety of different programming environments including Visual
Basic

®
, the Python

®
 programming language, and MATLAB

®
. While the COM module is restricted to the

Windows operating system, Phreeqpy (Müller, 2011b) provides an implementation for Python based on
ctypes (part of Python’s standard library) and the IPhreeqc DLL or shared library. First tests of the
implementations of Phreeqpy were successful on computers running Windows

®
 and Linux operating

systems (OS) and are expected to execute on Mac OS X
®
 with only minor modifications.

In the past, incorporating PHREEQC calculations into an application has usually taken one of two
approaches: (1) tight coupling, which involves custom modification of the PHREEQC's source code or (2)
loose coupling, which requires writing files and starting a new PHREEQC process for each transport time
step. The first approach requires a great familiarity with the PHREEQC source code and is very labor
intensive, especially if the coupled code requires updating to each new PHREEQC release. Loose
coupling, while much easier to implement, often results in long run times because of considerable
overhead for starting a new process, reading input and output files, and repeated initialization calculations
for each time step.

IPhreeqc uses a few new PHREEQC keywords, such as MODIFY, DUMP, DELETE, and COPY that
allow easier manipulation of PHREEQC input and output data. The main advantage is that PHREEQC

632

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

can run without reading and writing files and that data can be exchanged between IPhreeqc and an
application by using the above-mentioned programming languages. All data exchange relies on input
strings that use the PHREEQC input format, including the new keywords. This internal data exchange has
two advantages: (1) typically execution times are faster, and (2) programming is simpler because
IPhreeqc can preserve computed chemical states between time steps instead of reinitializing PHREEQC
for each time step.

EXAMPLE PROBLEM

This study uses example problem 11 from Parkhurst & Appelo (1999) featuring one-dimensional
advection in a column (with no dispersion). Figure 1 shows a schematic of the model setup. A column
with 40 cells is filled with a sodium-potassium-nitrate solution that equilibrates with the exchanger. Then,
a calcium chloride solution flushes three pore volumes through the column, which requires 120 shifts.
Figure 2 shows the concentrations at the outlet of the column. Figure 3 shows the PHREEQC input file for
this problem.

exchanger

sodium-potassium-nitrate

calcium chloride

40 cells
3 pore volumes
120 shifts

Figure 1. Schematic setup of example problem:
The sodium-potassium-nitrate solution is in
equilibrium with exchanger and three pore
volumes of calcium chloride flush the column.

TITLE Example 11.--Transport and ion exchange.

SOLUTION 0 CaCl2

 units mmol/kgw

 temp 25.0

 pH 7.0 charge

 pe 12.5 O2(g) -0.68

 Ca 0.6

 Cl 1.2

SOLUTION 1-40 Initial solution for column

 units mmol/kgw

 temp 25.0

 pH 7.0 charge

 pe 12.5 O2(g) -0.68

 Na 1.0

 K 0.2

 N(5) 1.2

EXCHANGE 1-40

 equilibrate 1

 X 0.0011

ADVECTION

 -cells 40

 -shifts 120

 -punch_cells 40

 -punch_frequency 1

 -print_cells 40

 -print_frequency 20

SELECTED_OUTPUT

 -file ex11adv.sel

 -reset false

 -step

 -totals Na Cl K Ca N(5)

USER_PUNCH

 -heading Pore_vol

 10 PUNCH (STEP_NO + .5) / 40.

END

Figure 2. Result of advection modeling with
exchange. The concentrations are shown at the
outlet of the column.

Figure 3. PHREEQC input file for the example
problem.

While PHREEQC can solve this simple problem in one run, we will use it as a test case for coupled
applications. Figure 4 shows the conceptual approach for calculating advection in a transport model
coupled with calculating chemical reactions with PHREEQC. Instead of the simple one-dimensional
advection model, we could use a more sophisticated multi-dimensional advection-dispersion transport
model, but the principle coupling approach would be the same.

633

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

SELECTION OF PROGRAMMING LANGUAGES

IPhreeqc can interface with several programming languages. This study uses C++ (Stroustrup, 2000) and
Python (Beazley, 2009; PSF, 2011). C++ is a powerful, statically-typed programming language. It is
widely used for different tasks, including large software projects. C++ offers lots of capabilities, but
requires considerable effort to learn. Python is a dynamically-typed programming language that is
continually increasing in popularity. It is widely used in the scientific community because it is relatively
easy to learn, yet powerful, and it provides many libraries applicable to common problems in different
technical and scientific fields. Python is well suited for rapid prototyping and fast development. Therefore,
the example problem was first programmed and tested with Python and later ported to C++.

LOOSELY COUPLED MODEL USING PYTHON AND PHREEQC

Development of a loosely coupled model, which follows the simulation sequence shown in Figure 5, was
the first step in the comparison of programming approaches. A Python program performed the shifting,
generation of input files, and reading and interpreting of PHREEQC output files. In this approach, the
PHREEQC executable was initiated 120 times. In addition, each PHREEQC run starts with a new input
file and cannot access information from previous shifts. Therefore, each PHREEQC run saved all species
concentrations and exchanger compositions in a selected-output file. The Python program used these
values, after shifting the input, as initial conditions for the next PHREEQC run. The output after all time
steps produced the same results shown in Figure 2. The Python program contains 158 lines of code,
excluding comments and blank lines (Müller, 2011b).

Advection model

PHREEQC (EXCHANGE)

Create input file

Start external process

Read output file

Transport calculation

Figure 4. Conceptual coupling of an advection
model with PHREEQC.

Figure 5. Use of PHREEQC as external
process.

TIGHTLY COUPLED MODEL USING PYTHON AND COM

In the next step, we used the IPhreeqc COM interface with another Python program. Specifying the
PHREEQC keyword SOLUTION_MODIFY, we updated the species concentration for each time step after
calculating the shifting. Unlike the loosely coupled approach, we did not read or write exchanger
compositions because PHREEQC retained the values in memory during the course of the simulation.
Figure 6 shows a sample of the Python code using the IPhreeqc API. The output after all time steps
produced the same results shown in Figure 2. The program contains 152 lines of code, excluding
comments and blank lines (Müller, 2011b).

TIGHTLY COUPLED MODEL USING PYTHON AND THE DLL

Because the COM interface is only available on the Windows operating system, we wrapped the
DLL/shared library containing IPhreeqc by using the Python programming language feature ctypes (part

634

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

of the Python standard library). The resulting IPhreeqc API is the same as for the COM interface. We
successfully tested this approach on a computer running a Linux OS. In principal, it will work on other
non-Windows systems. The output after all time steps produced the same results shown in Figure 2.
Since the wrapped-DLL/Shared-library approach uses the same API as the COM, the Python program
also contains 152 lines of code, excluding comments and blank lines (Müller, 2011b).

...

create IPhreeqc object

phreeqc = phreeqc_mod.IPhreeqc()

load database

phreeqc.load_database(r"phreeqc.dat")

create initial conditions

initial_conditions = make_initial_conditions()

phreeqc.run_string(initial_conditions)

get components

components = phreeqc.get_component_list()

create selected output and run it

selected_output = make_selected_output(components)

phreeqc.run_string(selected_output)

run initial conditions

phc_string = "RUN_CELLS; -cells 0-1\n"

phreeqc.run_string(phc_string)

conc = get_selected_output(phreeqc)

...

...

// create IPhreeqc object and load database

int id = CreateIPhreeqc();

if (LoadDatabase(id, "phreeqc.dat") != 0)

EHandler(id);

SetOutputFileOn(id, 1);

// run initial conditions, copy to column

initial_conditions(id, ncells);

// Define SELECTED_OUTPUT

std::vector<std::string> components, headings;

make_selected_output(id, components, headings);

// Run initial conditions

std::ostringstream run_stream;

run_stream << "RUN_CELLS" << std::endl << "-cells

1-" << ncells << std::endl;

if (RunString(id, run_stream.str().c_str()) != 0)

EHandler(id);

// conc has all selected output values

std::vector<std::vector<double>> conc;

extract_selected_output(id, conc);

...

Figure 6. Initialization of IPhreeqc, loading of
database and setup of initial conditions using
Python. (Calls to IPhreeqc API are in bold).

Figure 7. Initialization of IPhreeqc, loading of
database and setup of initial conditions using
C++. (Calls to IPhreeqc API are in bold).

TIGHTLY COUPLED MODEL USING C++ AND THE DLL

In the next step of our study, we used the IPhreeqc API with a C++ program. We implemented the same
functions used in the Python programs. Figure 7 shows a sample of the code. The output after all time
steps produced the same results shown in Figure 2. The program contains 197 statement lines, without
comments or blank lines (Müller, 2011b).

COMPARISION OF PROGRAMMING APPROACHES

Figure 8. Comparison of scaled run times for
the direct solution and the different coupling
methods.

Figure 8 shows the scaled run times of all
approaches. The run time for the direct solution is
about 1.2 seconds. It serves as reference and all
other values are multiples of it. The direct, non-
coupled solution uses the ADVECTION keyword in
PHREEQC. The model using C++ and the DLL
(CPP, in Figure 8) takes about 70% longer. The
Python models, COM and DLL, take 35% and 45%
longer than the C++ model. The loosely coupled
model (external, in Figure 8) takes about 20 times
longer than the direct PHREEQC model, and more
than 8 times longer than the Python-DLL model. In
general, the run times for the IPhreeqc models are
about an order of magnitude faster than the
loosely-coupled model.

The effort to program the approaches varies considerably among programming languages and depends
on programming skill. Programming in Python is typically easier and faster than in C++, in part because

635

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

Python is an interpreted language that does not require a separate compile step. Programming in C++
generally requires a more skilled programmer. In general, Python is well suited to fast prototyping of
different approaches.

CONCLUSIONS

The new IPhreeqc API allows for efficient development of coupled reactive transport models. Tests using
IPhreeqc in a simple coupled reactive advection model showed an order of magnitude decrease in run
times compared to a loosely-coupled model, which required starting PHREEQC as an external process
for each transport time step. Furthermore, programming of a tightly-coupled model is facilitated because
chemical states are retained in the IPhreeqc module between model time steps. While the run times of
the Python models are somewhat longer than that of the C++ model, programming using Python can be
considerably simpler, and Python code can be deployed without modification on multiple computer
platforms.

REFERENCES

Beazley, D.M., 2009 Python Essential Reference, 4th edition, Addison-Wesley Professional; ISBN-13:
978-0672329784.

Charlton, S.R., and Parkhurst, D.L., 2011. Modules based on the geochemical model PHREEQC for use
in scripting and programming languages. Computers and Geosciences,
doi:10.1016/j.cageo.2011.02.005

Müller, M., 2011a. PITLAKQ - The Pit Lake Hydrodynamic and Water Quality Model.
http://www.pitlakq.com

Müller, M., 2011b. Phreeqpy - Python Tools for Working with PHREEQC. http://www.phreeqpy.com
Parkhurst, D.L., and Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2)—A computer program

for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations:
U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 pp.

Parkhurst, D.L., Kipp, K.L., and Engesgaard, P., and Charlton, S.R., 2004. PHAST—A program for
simulating ground-water flow, solute transport, and multicomponent geochemical reactions. U. S.
Geological Survey Techniques and Methods 6—A8, 154 pp.

Parkhurst, D.L., Kipp, K.L., and Charlton, S.R., 2010. PHAST version 2 —A program for simulating
groundwater flow, solute transport, and multicomponent geochemical reactions. U. S. Geological
Survey Techniques and Methods 6—A35, 235 pp.

PSF (Python Software Foundation), 2011. The Python Website, http://www.python.org.
Prommer, H., Davis, G.B., Barry, D.A., 1999. PHT3D—A three-dimensional biogeochemical transport

model for modelling natural and enhanced remediation, in: Johnston, C.D. (Ed.), Contaminated
Site Remediation: Challenges Posed by Urban and Industrial Contaminants. Centre for
Groundwater Studies, Fremantle, Western Australia, pp. 351-358.

Stroustrup, B., 2000. The C++ Programming Language. Addison-Wesley Professional; third edition,
ISBN-13: 978-0201700732.

Wissmeier, L., Barry, D.A., 2010. Implementation of variably saturated flow into PHREEQC for the
simulation of biogeochemical reactions in the vadose zone. Environmental Modelling & Software,
25(4), 526-538.

636

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

